iPod 3rd and 4th Generation

If you have more than one pocket, why not have more than 1,000 songs in each? After building confidence restoring the 6th and final version of the iPod Classic, I was ready to take on a dual restoration of a 3rd and a 4th generation iPod.

The 3rd generation iPod belonged to a good friend who insisted on only including full albums from different genres and shuffling between them with abandon.

The 4th generation iPod was my first. A gift from my wife given shortly after we were married. This iPod was my daily companion for many years, allowing me to enjoy custom playlists and introducing me to a steady rotation of podcasts.

Apple’s 3rd generation iPod was the first to come with the soon-to-be ubiquitous 30-pin dock connector and the second with a “touch wheel” interface, though its glowing red control buttons makes it unique to this day. By replacing the Firewire port, the new dock connector enabled connections via USB to PCs. First offered in 2003 and revised in 2004, this iPod has a two-inch grayscale 160 x 120 display, 8-hours of battery life, and was available in 10GB through 40GB configurations.

The 4th generation iPod was the first with the iconic “click wheel” interface and the last to come with a grayscale display. This generation launched in July 2004, with an updated but similarly spec’d display, increased battery life, and was available in 20GB or 40GB configurations. In October 2004, a “Special U2 Edition” was released in black and red–providing the first non-white iPod option. This generation was also the base for the iPod Photo, with its 60GB hard drive and a 220 x 176 display providing 65,536 colors.

To begin this restoration, I knew the batteries needed to replaced. The 4th generation model was in decent shape with a functioning hard drive, but I was uncertain about the 3rd generation’s drive. At first I thought the battery was completely dead and would not take a charge, but I later learned this model can only be powered via Firewire, and I was connecting it to a USB charger.

I visited iFixIt and picked up new batteries for both. Regardless of the drive condition, I planned to replace both spinning drives with solid state options. A few months ago, I installed an SD card in a 6th generation iPod, but for these older models, I decided to use Compact Flash.

I selected 64GB SanDisk Extreme Compact Flash cards. iFlash.xyz offers an inexpensive iFlash-CF card, but I also needed an adapter to interface with the pin connector used on the older model iPods.

Prying open the 3rd generation iPod case.
Inspecting the internals.

Opening the 3rd generation iPod was not particularly challenging. While I was careful and used plastic picks and multiple tools to slowly work the clips free, it seems I was not careful enough. After getting the top and bottom apart, I discovered the headphone connector had separated from its cable. That was a problem!

The 4th generation unit opened fairly easily and without damage. Both units were clean and had the same 20GB 3.3V Toshiba MK2004GAL ATA-100 series hard drive running at 4200 RPM, but they were housed in somewhat different blue protective bumpers.

Opening the 4th generation iPod
Clean on the inside

After removing the hard drives, both batteries were easily accessible and replaced. The 3rd generation hard drive connection cable had to be removed from the logic board to access the battery, while the 4th generation pin connector remained attached.

3rd generation battery replacement
New 4th generation battery installed

The iFlash card was easily installed in the 3rd generation enclosure. However, the 4th generation’s fit was more complicated. With the adapter installed, the card rested on the iPod’s internal battery connector. Unfortunately, the diagonal on the iFlash card went the wrong way to accommodate the conflict. So, after confirming no traces were impacted, I trimmed the top of the iFlash card.

3rd generation adapter and iFlash installation
Trimming the iFlash card to fit comfortably within the 4th generation enclosure
Completed 4th generation card installation

I was now ready to address the broken headphone connector. I first tried gluing the 10-point connector in place using 1mm double-sided tape. I hoped the connector’s legs would make satisfactory contact once the case was securely closed, but that was wishful thinking. I considered soldering the legs in place, but given the very small size, I suspected solder would stretch across and short the legs together. Also, while the tape held the connector if treated gingerly, once the connector was inserted into the plug, the slightest movement pulled it free of the cable. So, I headed to eBay. I was able to find a seller with a handful of 3rd generation headphone assemblies at a reasonable price. After receiving delivery, it was trivial to replace.

New headphone/hold switch assembly in place with a functional connector

As usual, gremlins affected the software installation. For the 4th generation model, the 64GB Compact Flash card was formatted using FAT32 Format, and it was setup with as a master boot record (MBR) partition. Once the card was inserted into the iPod and powered on, I plugged the iPod into a PC. iTunes downloaded a package onto the iPod, and then the iPod was disconnected and plugged into a wall charger. After a restart, a progress bar appeared under the Apple logo, and a few moments later, the iPod was ready to go. Returning to the PC, the unit synced and played music without issue.

After the initial iTunes restoration, the iPod needed to be plugged into a wall charge to complete the software installation.
Setup and ready to go

The 3rd generation restoration was not as smooth. After following the same format process, the iPod entered disk mode but was not recognized by iTunes or Windows. While troubleshooting the problem, the unit’s battery died. As noted above, this is when I discovered the iPod would only charge if connected to a Firewire cable. After letting it sit overnight plugged into a Firewire wall charger, I returned to the software problem. Now realizing the importance of Firewire, I thought perhaps things would work better if the iPod was connected to a Macintosh using a Firewire cable, and luckily, I had a mid-2007 iMac with a Firewire 400 port.

Since the iPod was going into disk mode, the Mac’s disk utility could see the drive. I decided to reformat it as an OS X Extended volume, and I was thrilled to see the drive pop up in the Finder. I was even more excited when iTunes launched. The system sat for several minutes, and then amazingly the iPod was recognized by iTunes and the restoration process began. I assumed I was home free, but no.

Once restored, the iPod connected with the Mac, but upon disconnection it would freeze. I soon learned that the unit never went to sleep and the battery eventually died. I had to regularly reboot the iPod by holding down the menu and play buttons. So, obviously there were problems. I entered diagnostic mode by holding down the previous, center select, and next buttons, but none of the tests were helpful.

Unsatisfied, I decided to try a smaller and slower Compact Flash card. This time, I selected a 32GB SanDisk running at 60MBps instead of 120MBps. This slower speed was still twice as fast the Toshiba drive’s 31.6MBps. Once the new card arrived, I formatted it to FAT32 using Linux, but Window’s iTunes still did not recognize it and the iPod was constantly rebooting and showing the folder icon with an exclamation mark. So, I headed back to the Mac and reformatted it for OS X, but that did not work either, and the iPod still showed the folder and exclamation mark. Perplexed, I eventually used a utility that showed me the card’s partition table, and I discovered that somewhere along the way (likely when using Linux), an EFI system partition was created on the drive. My subsequent formatting attempts did not impact the hidden EFI partition. After deleting it, I used Windows to format the entire drive, and everything feel into place. iTunes recognized the iPod, loaded the restoration package, and after plugging into a Firewire external charger and rebooting, the restoration completed and the iPod could sync without issue to iTunes on both Windows and Macintosh. The strangeness also disappeared. The drive disconnected without hanging and the battery now appears to behave normally.

3rd generation iPod after its software problems were resolved

I enjoyed this dual restoration. Such projects are a mental puzzle, and it forces me to recall long-forgotten tech memories. The 3rd generation iPod will go back to my friend, and I will enjoy a second life for my 4th generation iPod. I hoped to use it in my car, but at some point Ford’s SYNC removed iPod integration. Nevertheless, it is good to have my music library once again packed into a sleek white a silver box–available to me anytime with the click of a wheel.

Compaq Deskpro 386s

Compaq was a bold and innovative company, producing some of the best computers of the 1980s. Founded by trio of former Texas Instrument employees, the company famously (and legally) reverse-engineered the IBM PC and created the first successful portable PC. After making a name for itself, Compaq pivoted to the desktop. The Deskpro line of computers was known for quality, speed, and a steep purchase price. In 1986, the Deskpro 386 was the first computer with Intel’s groundbreaking 80386 processor, ushering in the 32-bit revolution. The later Deskpro 386s, manufactured in 1988, had an updated form factor and another first–this time with Intel’s new 80386SX processor.

I was visiting a friend’s house in the mid-80s when I was introduced to his father’s Compaq Portable. It had a mysterious suitcase design and “made for business” reputation. My friend’s father worked in the Texas oil business, so I’m sure he spent his days using Lotus 1-2-3, but we took to the skies with Microsoft’s Flight Simulator.

While that Compaq was the first PC to cross my path, I eventually got an XT clone in 1987. However, I had to wait until 1990 to make a homebrew 386SX.

The Deskpro 386s was positioned as an entry-level 386, offering a 32-bit processor but running on a 16-bit data bus. This particular unit is a Model 40, with a 16MHz 80386SX processor, 4MB of RAM (located on the proprietary memory expansion card), built-in VGA graphics, a 40MB Conner hard drive, and both 3.5-inch and 5.25-inch floppies. Along with a single 9-pin serial and parallel port, the computer has two PS/2 ports for connecting a mouse and keyboard. This was an innovation, as the PS/2 interface was created the year before for IBM’s PS/2 line of computers.

The Deskpro 386s sales flyer clearly positions this system as Compaq’s attempt to best IBM’s mid-range PS/2s, such as the PS/2 Model 50. IBM’s newest 286 ran at 10MHz offering 2MB of RAM, VGA graphics, and built on the new Micro Channel Architecture. Given the competition, this Deskpro was a strong play to dominate the mid-level corporate market.

This particular computer was an eBay find. I was looking for a solid 386, and Compaq is a gold standard. The unit arrived untested and in rough condition. After opening the case, I found a number of dead spiders and a fair amount of rust. Though, I was pleased to see a well-populated memory card and a self-contained battery safely attached to the side of the case. I was also pleased to track down the general maintenance and service manual for the Deskpro 386 line and the individual spec sheet for this 386s.

The front plastic was a bit yellowed, but in decent condition. The missing blank plate covered the location of the optional tape backup unit.
After blowing out the case and taking an inventory, it looked good, except for obvious rusting.
Everything except the bottom case laid out for inspection.

The first order of business was to completely tear down the computer, cleaning as I went. I was particularly interested in the custom power supply, as it would be difficult to source a replacement. After cracking open the PSU, I had concerns. One of the electrolytic capacitors was bulging and there was corrosion around it. Also, the PCB had burned near a thick-film metal glaze power resistor.

Bulging electrolytic capacitor on the proprietary power supply.
Scorched circuit board around a power resistor.
More signs of significant heat from the power resistor on the back of the PCB.

The capacitor was easily replaced, though I had to use non-conductive paint to repair the damage caused by the corrosion. The hot resistor was a bit more complicated. After researching the issue, I suspected the resistor might be working as expected, but it was simply too close to the less-heat tolerant circuit board. Therefore, I removed the resistor and re-soldered it a bit higher from the PCB and placed heat-resistant kapton tape under the reinstalled component.

I was finally ready to power it on. The power supply utilizes a proprietary connector, and I was unable to find the connector’s pinout information. Therefore, I plugged it in to the motherboard, added one of the drives so there was a reasonable load on the PSU, and I held my breath. Unfortunately, my test only resulted in a periodically flashing LED on the motherboard and a simultaneous flash of the floppy drive’s activity light. Checking with my multimeter, I found odd and varying voltages, but the most common reading was 30V–hardly what was expected.

Given the propriety design, and lacking any detailed technical documentation, I was uncertain whether the problem was with the PSU or the motherboard. After setting the project aside for awhile, I took to eBay and found another Compaq Deskpro 386s available for parts. I was watching the item, but the “Buy Now” price was too high for me. After some time, the seller noted my interest and offered to sell me the computer at half the asking price. I jumped on the offer, and now had two questionable Deskpro 386s computers.

The second computer was rustier than the first, but the front plastic was in better condition. It lacked a hard drive and had less RAM, but was otherwise very similar. According to dates on various components, it appeared to be manufactured a few months after the first Deskpro.

A second Deskpro 386s arrives
Testing with the second power supply

The power supply from the second computer had slightly different markings, but otherwise looked identical. I resumed my testing with the second PSU and found the same results. Feeling frustrated, I pulled the second computer’s motherboard from its case and connected it to the PSU, floppy drive, and speaker. Instead of a blinking LED, I heard long and short beeps of the PC speaker and saw normal activity from the floppy drive. I swapped the second PSU for the repaired unit and got the same results. So, both power supplies operated normally, but the original motherboard has a fault. Perhaps the surface-mount tantalum capacitors near the power supply connector were the problem, but that repair can wait.

I was finally ready to reassemble the computer, picking the best parts available from either computer as I went, but first I had to deal with the rust. I had learned of the benefits of fallout remover from Adrian Black’s YouTube video. I stripped the machine down to bare metal, taped off stickers or markings, and applied the smelly Iron Free compound one piece at a time. I watched as the yellow chemical turned rust into a wine color. After a few minutes, I wiped the pieces dry.

After the fallout treatment, if necessary, I sanded the treated spots until I saw clean metal and then prepared to paint. For the inside of the case, I selected Krylon’s Fusion Matte Glacier Gray spray paint. This provided a fresh and clean look to the inside components. For the exterior top and sides of the case, I used Krylon’s Satin Almond, but the color was a bit warmer than I hoped. Matte Clamshell was an alternative I also considered.

I addressed rust on various ports and small components, but with the power supply reinstalled, I added the motherboard and was pleased with the clean and shinny computer coming together on my bench.

Rust gets everywhere, but luckily is fairly ease to remove.
Fine grain sand paper usually does the job and rusty screws get soaked in vinegar.
Factory fresh after cleaning, rust remediation, and painting.

Luckily, I was able to secure the appropriate blank face plate from the second Deskpro, and I cleaned and lubricated the floppy drives. The battery was the last hardware detail. While I was able to find a new replacement Tadiran 3.6V battery, it took me awhile to notice the pins were not the same. With a little fiddling, I was able to move the red wire next to the black, matching the pins on the motherboard.

The drive stack looks good.
Original and replacement 3.7V batteries

While hardware is fun to tinker with, computers are built to run software. Before I could do that I had to configure the system. I was able to find the spec sheet describing the motherboard DIP switches, but kindly Compaq also posts such pertinent information on the inside panel of the computer. While this computer is more sophisticated than earlier XT computers, it does not have a boot-configurable BIOS. Compaq’s early computers are setup through a floppy-based configuration utility. Luckily, this software is still available online along with Compaq’s OEM version of DOS 3.31, complete with customized setup and utility applications.

After some trial and error, I confirmed all 4MBs of the RAM were working; then I moved on to the hard drive. In another first, Compaq was the first to support IDE hard drives. The Conner hard drive in this 386s appeared to be in good condition. After making the appropriate Type 43 selection with the configuration software, I was happy to see “Starting MS-DOS…” on the Model 470A Compaq VGA Color Monitor.

The computer appears to have been used in an elementary school classroom. DOS 6.22 was installed and the hard drive’s well-organized contents consisted exclusively of age-appropriate educational titles, except for a stock version of Windows 3.1. The hard drive runs fine, but the spinning platters sound a bit odd each time the computer starts. For that reason, I decided to install a Compact Flash adapter with a 256MB card. The provided IDE cable is a custom length, barely long enough to stretch from the motherboard to the single hard drive. I attempted to replace the cable with a longer one capable of connecting both the Conner drive and the Compact Flash adapter, but I was unable to get either drive to work unless I used Compaq’s provided cable. I don’t understand how the cable could be customized, but at the moment, I am only able to use the short cable to connect one drive at a time to the onboard controller.

Thankfully, with the help of an XTIDE card, I could install the Compact Flash card as a second drive and backup the original Conner drive. Installing XTIDE was tricky. After much mucking around, I finally discovered the XTIDE needed the latest IDE_386 binary file flashed to its EEPROM and block mode must be disabled for the legacy drive to reliably copy files.

Compaq Deskpro 386s Model 40 with a Model 470A VGA color monitor and somewhat newer Compaq speakers, keyboard, and mouse.

Compaq was a standout among IBM-clone manufactures. In its early days, the company was rightfully regarded for its innovation and quality. Thankfully, this computer was well-made and is reliable once more. I am proud to own an early Compaq, as it characterizes the spirit and promise of the early PC era.

Dell Dimension V333c

Restoring vintage computers is certainly nostalgic, but it is also therapeutic. It feels good to clean something dirty, restore something old, and improve something so it lasts. I have a long history with this early Celeron computer; so awakening it from its long slumber was particularly satisfying.

I bought this computer in December 1998 as a Christmas gift for my parents. It replaced the home-built 386 I assembled as a teenager. Now a college graduate with my first “real” job, I was proud to provide them a significant technology upgrade.

When Dell created the Dimension V333c, it was was a great value at an important time in PC history. The race between Intel, AMD, and Cyrix was neck and neck, and Intel was trying to upend the market with its Pentium line of processors. While the original Pentiums (P5s) were a decent upgrade from the 486 processors, the architecture noticeably matured with the Pentium II (P6) systems.

Intel’s Celeron was a low-end Pentium II, with the front-side bus limited to 66MHz, and little to no L2 processor cache. The processor in the V333c is a second generation Medocino Celeron using Intel’s 440BX chipset and running at 333MHz with 32KB of L1 and 128KB of L2 cache available for the processor.

The V333c was released a few months after Microsoft’s Windows 98, and Dell’s reasonable price and well-rounded configuration attracted attention.

I rediscovered this system in early 2019. It had been in storage for many years, and I could have formed a full-sized rabbit from the dust bunnies inside. After a thorough cleaning, I replaced the battery, tested the power supply, and powered it on. It booted to Dell’s A08 BIOS without issue. The original Maxtor hard drive still worked, though the system struggled under the weight of the later installed Windows 2000 operating system. To give it a performance boost, I replaced the spinning drive with an IDE to CompactFlash adapter and upgraded the RAM from the stock 64MB to the maximum 384MB .

Completely disassembled, cleaned, and reassembled.
Fresh battery installed with no damage from the original coin cell

The installation of the CompactFlash adapter was fairly straightforward once I realized the BIOS would not recognize a large drive. Going with an 8GB card worked fine. Once the fast and capable drive was installed, I loaded Windows 98 SE and luckily could still find the necessary device drivers on Dell’s support site.

CompactFlash hard drive replacement.

Built during a transitional time, the motherboard has two legacy 16-bit ISA expansion slots along with three PCI slots. It sports a 3.5-inch floppy, a 32X CD-ROM, and a Iomega Zip drive. Connectivity was available through traditional serial, parallel, and PS/2 ports, but also includes two USB connectors and built-in 10/100 Ethernet. The video system has an SXGA-capable ATI Rage Pro AGP 2X controller with 8MB of SDRAM. Sound is handled by the onboard MIDI, OPL3, and Sound Blaster Pro-compatible Yamaha YMF724 audio controller.

To enhance its “in-between” usefulness, I tried unsuccessfully to install at 5.25-inch floppy drive in an empty drive bay. Unfortunately, the BIOS would not recognize a second floppy, and installing an ISA-based floppy controller only resulted in frustration. However, I’ve not given up hope, as it would be helpful to access 5.25, 3.5, Zip, and CD-ROM media in one machine.

Running Microsoft Office 97 Standard Edition
Playing 688 Attack Sub in DOS mode

The V333c was a well-regarded, value-based home system in its day, and the computer’s versatility and dependable components have enabled it to stand the test of time.